Which Junction Loss Methodology Do We Use?

By:

Roger T. Kilgore, PE
Kilgore Consulting and Management
&

Joe Krolak, PE Federal Highway Administration

August 8, 2001

U.S. Department of Transportation

Proposed Access Hole Energy Loss Method

By:

Roger T. Kilgore, PE Kilgore Consulting and Management

August 26, 2003

Why do we care?

- Although "minor", junction losses can add up.
- Simple methods require selection of arbitrary energy loss coefficients.
- Complex methods require many variables and may be computationally challenging.
- Unreasonable results have been reported with existing methods.

Junction Loss Defined

$$\Delta E = E_i - E_o$$

Available Methods

- Absolute Method
- Standard Method
 - HEC-22 approach based on 1989 Lab Report by Chang and Kilgore (HYDRAIN V5.0)
 - HYDRA approach based on 1994 Research Report by Chang, Kilgore, Woo, and Mistichelli (HYDRAIN V6.x)
- Generic Method
 - Power Loss Approach, Chang, et al., 1994

Standard Method

$$\Delta E = K \left(\frac{V_o^2}{2g} \right)$$

- Where does K come from?
 - HEC-22 has values ranging from 0.15 to 1.5
 - Many situations not represented

FHWA Approaches for K

- Based on laboratory results
- Considered variations in parameters

$$\Delta E = K \left(\frac{V_o^2}{2g} \right)$$

HEC-22 Approach

$$K = K_o C_D C_d C_Q C_p C_b$$

Where,

 K_0 = relative junction size

C_D = relative pipe diameter

 C_d = flow depths

 C_{O} = lateral inflows

 $C_p = plunging flow$

 $C_b = benching$

Independent Variables for K

- ♦ b/D₀
- $\bullet \theta$
- $\Delta D_o/D_i$
- $varphi y_a/D_o$
- Q_i/Q_o
- ♦ h/D₀
- $(h-y_a)/D_o$
- Benching type

- Dimensionless ratios
- Compute a single number, K
- Multiply K by outflow pipe velocity head

HYDRA Approach

$$K = (C_1C_2C_3 + C_4)C_b$$

Where,

 C_1 = relative junction size

 C_2 = water depth in manhole

 C_3 = lateral inflow, plunging flow

 C_4 = relative pipe diameter

 C_b = benching

Independent Variables for K

- ♦ b/D₀
- **⋄** θ
- $\Delta D_o/D_i$
- $varphi y_a/D_o$
- Q_i/Q_o
- ♦ h/D₀
- $(h-y_a)/D_o$
- Benching type

- Dimensionless ratios
- Compute a single number, K
- Multiply K by outflow pipe velocity head

Generic Method

$$\Delta E = K_o \left(\frac{V_o^2}{2g} \right) + K_i \left(\frac{V_i^2}{2g} \right)$$

- Loss coefficients on the inflow and outflow velocity heads.
- Conceptual model of entrance and exit losses.
- ❖ Where do we get the K₀ and Kᵢ values?

Power Loss Approach

$$\Delta E = \alpha_o \left(\frac{V_o^2}{2g} \right) + \sum \alpha_i \left(\frac{V_i^2}{2g} \right) + \sum \text{plunging losses}$$

- ❖ Power in Power out = Power Lost
- Generic method is a simplification of the Power Loss method.
- α_0 and α_i are functions of similar parameters discussed earlier.
- Iterative; closed form.

Issues

- Standard Method: Focus on a K factor which is multiplied by an outflow velocity head
- Power Loss Method: Iterative solution required
- Generic Method: Provides no source for K values
- Dependence on Velocity Head
 - Inlet control
 - Supercritical Flow
 - Relationship between lab/computed velocities

Revisit Definition

$$\Delta E = E_i - E_o$$

Proposed Method

- 1. Entrance Losses: access hole depth, y_{a1}
- Additional Losses: benching, angle inflows, and plunging inflows, revised access hole depth, y_a
- 3. Exit Losses: each inflow pipe

Known: HGL₀ and EGL₀

- Downstream conditions.
- Datum: invert of outflow pipe.

1. Entrance Losses

- Estimate initial y_{a1}
- Adapt concepts of inlet control and full flow for culverts.

Full Flow

❖Full Flow: HGL_o > D_o

$$y_{a,oc} = y_o + P_o + \frac{V_o^2}{2g} + \Delta E_{oc}$$

$$\Delta E_{oc} = K_o \left(\frac{V_o^2}{2g} \right)$$

 K_{o}

$$K_0 = 0.2$$

- Captures the contraction losses entering the outflow pipe, as in a culvert
- Entrance loss coefficients from HDS-5 range from 0.2 to 0.9
- ♦ b/D₀, relative access hole size, not a factor

Inlet Control

- Entrance to outlet pipe controls flow into outlet pipe.
- Weir or orifice flow: calculate both and take largest headwater
- Discharge Intensity:

$$\frac{Q_{0}}{A_{0}D_{0}^{0.5}}$$
 $\frac{Q_{0}}{\sqrt{2g}D_{0}^{2.5}}$

Submerged (Orifice)

$$y_{a,ics} = 3.9 \left(\frac{Q}{\sqrt{2g}D_o^{2.5}}\right)^2 D_o$$

3.9 coefficient is best fit

Unsubmerged (weir)

$$y_{a,icu} = 2.3 \left(\frac{Q}{\sqrt{2g}D_o^{2.5}} \right)^{0.67} D_o$$

2.3 coefficient is best fit

Initial Depth

2. Additional Losses

- Benching
- Angled inflow
- Plunging inflow

$$\mathbf{y}_{a} = \mathbf{y}_{a1} + \Delta \mathbf{E}_{B} + \Delta \mathbf{E}_{\theta} + \Delta \mathbf{E}_{H}$$

Reference Dimension

$$\Delta E = C \left[(y_{a1} + \frac{\alpha Q_o^2}{2gA_a^2}) - \left(y_o + P_o + \frac{Q_o^2}{2gA_o^2} \right) \right]$$

$$\alpha = f\left(\frac{by_{a1}}{D_o^2}\right)$$

$$\Delta E = C[y_{a1} - (y_o + P_o)]$$

Benching, C_B

Floor	Bench	Bench
Configuration	Submerged*	Unsubmerged*
Flat (level)	-0.05	-0.05
Depressed	0.0	0.0
Half Benched	-0.05	-0.65
Full Benched**	-0.25	-0.93
Improved**	-0.60	-0.98

*Submerged: y_a>2.5 D_o

**Not tested in FHWA data.

Angle Inflows, C_{θ}

$$C_{\theta} = 0.5 \left| \cos \frac{\theta_w}{2} \right|$$

$$\theta_{w} = \frac{\sum Q_{i}\theta_{i}}{\sum \theta_{i}}$$

- ❖ Include each inflow pipe where z_i < y_{a1}
- $\bullet \theta$ is angle with respect to outflow pipe, e.g. θ for straight through = 180°

Plunging Inflows, CH

$$C_H = 0.35 \sum \left[\left(\frac{Q_i}{Q_o} \right)^{0.75} \left(1 + H_i^{0.3} \right) \right] \qquad H_i = \frac{Z_i - y_{a1}}{D_0}$$

- ❖ Include each inflow pipe where z_i > y_{a1}
- Includes inlet flow, if present.

3. Exit Losses

- If y_a < z_i then there are no exit losses and the EGL is computed using inflow pipe hydraulic parameters
- If not, compute exit losses:

$$\Delta E_{i} = K_{i} \left(\frac{Q_{i}^{2}}{gD_{i}^{4}} \right)$$

$$K_i = 0.46 \left(\frac{b}{D_i}\right)^{0.55}$$

- Captures the expansion losses entering the access hole
- ❖b/D_i = relative access hole size
- $•1 < b/D_i < 4$
- Effect of access hole size modest

Calculate HGL_i and EGL_i

- Calculated for each pipe.
- Process continues upstream.

FHWA Data Set

All Runs

- 740 configurations/discharges
- 1618 inflow pipes
- 2.2 inflow pipes/run

Base Runs

- 1 inflow pipe and equal inverts
- 68 runs

Performance

- Access Hole Depth, y_a
 - HEC-22: RMS = 0.094 m
 - HYDRAIN: RMS = 0.048 m*
 - Proposed: RMS = 0.047 m
- ❖Inflow Energy Gradeline, E_i
 - HEC-22: RMS = 0.072 m
 - HYDRAIN: not reported.
 - Proposed: RMS = 0.037 m

Proposed: ya

HEC-22: y_a

Proposed: Ei

HEC-22: E_i

Reasons for Adoption

- Hydraulically sound fundamentals
- 2. Move away from velocity head for supercritical and inlet control flows
- 3. Direct, non-iterative procedure
- 4. Simpler format
- Equivalent or better RMS

Next Steps

- Perform selected additional laboratory experiments
- Refine method